An Uncleaved Signal Peptide Directs the Malus xiaojinensis Iron Transporter Protein Mx IRT1 into the ER for the PM Secretory Pathway

نویسندگان

  • Peng Zhang
  • Song Tan
  • James O. Berry
  • Peng Li
  • Na Ren
  • Shuang Li
  • Guang Yang
  • Wei-Bing Wang
  • Xiao-Ting Qi
  • Li-Ping Yin
چکیده

Malus xiaojinensis iron-regulated transporter 1 (Mx IRT1) is a highly effective inducible iron transporter in the iron efficient plant Malus xiaojinensis. As a multi-pass integral plasma membrane (PM) protein, Mx IRT1 is predicted to consist of eight transmembrane domains, with a putative N-terminal signal peptide (SP) of 1-29 amino acids. To explore the role of the putative SP, constructs expressing Mx IRT1 (with an intact SP) and Mx DsIRT1 (with a deleted SP) were prepared for expression in Arabidopsis and in yeast. Mx IRT1 could rescue the iron-deficiency phenotype of an Arabidopsis irt1 mutant, and complement the iron-limited growth defect of the yeast mutant DEY 1453 (fet3fet4). Furthermore, fluorescence analysis indicated that a chimeric Mx IRT1-eGFP (enhanced Green Fluorescent Protein) construct was translocated into the ER (Endoplasmic reticulum) for the PM sorting pathway. In contrast, the SP-deleted Mx DsIRT1 could not rescue either of the mutant phenotypes, nor direct transport of the GFP signal into the ER. Interestingly, immunoblot analysis indicated that the SP was not cleaved from the mature protein following transport into the ER. Taken together, data presented here provides strong evidence that an uncleaved SP determines ER-targeting of Mx IRT1 during the initial sorting stage, thereby enabling the subsequent transport and integration of this protein into the PM for its crucial role in iron uptake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we...

متن کامل

Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum

Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...

متن کامل

Proteins containing an uncleaved signal for glycophosphatidylinositol membrane anchor attachment are retained in a post-ER compartment

Glycophosphatidylinositol (GPI)-anchored membrane proteins are initially synthesized with a cleavable COOH-terminal extension that signals anchor attachment. Overexpression in COS cells of hGH-DAF fusion proteins containing the GPI signal of decay accelerating factor (DAF) fused to the COOH-terminus of human growth hormone (hGH), produces both GPI-anchored hGH-DAF and uncleaved precursors that ...

متن کامل

A Novel Transport Pathway for a Yeast Plasma Membrane Protein Encoded by a Localized mRNA

Generally, plasma membrane (PM) proteins are cotranslationally inserted into the endoplasmic reticulum (ER) and travel in vesicles via the Golgi apparatus to the PM. In the yeast Saccharomyces cerevisiae, the polytopic membrane protein Ist2p is encoded by an mRNA that is localized to the cortex of daughter cells. It has been suggested that IST2 mRNA localization leads to the accumulation of the...

متن کامل

Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis

Iron is a critical cofactor for a number of metalloenzymes involved in respiration and photosynthesis, but plants often suffer from iron deficiency due to limited supplies of soluble iron in the soil. Iron deficiency induces a series of adaptive responses in various plant species, but the mechanisms by which they are triggered remain largely unknown. Using pH imaging and hormone localization te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014